#include<iostream.h>
#include<conio.h>
void main()
{
int i1,i2,i3,t1,t2;
int k0[10];
int k1[10];
int k2[10];
cout<<"\nEnter 10 numbers:\n";
for(i1=0;i1<10;i1++)
{
cin>>k0[i1];
}
//initial means
int m1;
int m2;
cout<<"\n Enter initial mean 1:";
cin>>m1;
cout<<"\n Enter initial mean 2:";
cin>>m2;
int om1,om2; //old means
do
{
//saving old means
om1=m1;
om2=m2;
//creating clusters
i1=i2=i3=0;
for(i1=0;i1<10;i1++)
{
//calculating distance to means
t1=k0[i1]-m1;
if(t1<0){t1=-t1;}
t2=k0[i1]-m2;
if(t2<0){t2=-t2;}
if(t1<t2)
{
//near to first mean
k1[i2]=k0[i1];
i2++;
}
else
{
//near to second mean
k2[i3]=k0[i1];
i3++;
}
}
t2=0;
//calculating new mean
for(t1=0;t1<i2;t1++)
{
t2=t2+k1[t1];
}
m1=t2/i2;
t2=0;
for(t1=0;t1<i3;t1++)
{
t2=t2+k2[t1];
}
m2=t2/i3;
//printing clusters
cout<<"\nCluster 1:";
for(t1=0;t1<i2;t1++)
{
cout<<k1[t1]<<" ";
}
cout<<"\nm1="<<m1;
cout<<"\nCluster 2:";
for(t1=0;t1<i3;t1++)
{
cout<<k2[t1]<<" ";
}
cout<<"\nm2="<<m2;
cout<<"\n ----";
}while(m1!=om1&&m2!=om2);
cout<<"\n Clusters created";
//ending
getch();
}
/* OUTPUT
Enter 10 numbers:
2 4 10 12 3 20 30 11 25 23
Enter initial mean 1:2
Enter initial mean 2:16
Cluster 1:2 4 3
m1=3
Cluster 2:10 12 20 30 11 25 23
m2=18
----
Cluster 1:2 4 10 3
m1=4
Cluster 2:12 20 30 11 25 23
m2=20
----
Cluster 1:2 4 10 3 11
m1=6
Cluster 2:12 20 30 25 23
m2=22
----
Cluster 1:2 4 10 12 3 11
m1=7
Cluster 2:20 30 25 23
m2=24
----
Cluster 1:2 4 10 12 3 11
m1=7
Cluster 2:20 30 25 23
m2=24
----
Clusters created
*/

Related
Post navigation

{developer} > Java > PHP > WordPress > HTML-CSS-JS
Thank you! i’ve been searching for this for a long time.

I have one question, what is the use of the k-means ? is it important !?

It is one of the most widely used machine learning algorithms in use today. There are different variations of it for data of different sizes, formats, etc.

Thanks bro!

What is the name of distance calculation used in the program?

svp le code k-means en utilisant la recherche locale svpp trés urgent help 🙁

Svp le code duPAM Partitioning Around Medoids

Algorithme de clustering

urgent ..